Decrease in dietary K intake stimulates the generation of superoxide anions in the kidney and inhibits K secretory channels in the CCD.

نویسندگان

  • Zhi-Jian Wang
  • Peng Sun
  • WenMing Xing
  • ChunYang Pan
  • Dao-Hong Lin
  • Wen-Hui Wang
چکیده

We previously demonstrated that K depletion inhibited ROMK-like small-conductance K channels (SK) in the cortical collecting duct (CCD) and that the effect was mediated by superoxide anions that stimulated Src family protein tyrosine kinase (PTK) and mitogen-activated protein kinase (MAPK) (51). However, because animals on a K-deficient diet had a severe hypokalemia, superoxide-dependent signaling may not regulate ROMK channels under physiological conditions with a normal plasma K concentration. In the present study, we used the patch-clamp technique and Western blot to examine the effect of a moderate K restriction on ROMK-like SK channels and the role of PTK and MAPK in regulating apical K channels in the CCD of animals on a low-K diet (LK; 0.1% K). Rats and mice fed a LK diet for 7 days had a normal plasma K concentration. However, a LK intake increased the expression of angiotensin II type 1 receptor in the kidney. Moreover, patch-clamp experiments demonstrated that LK intake decreased the probability finding SK channels and channel activity defined by NP(o) (a product of channel number and open probability) in the CCD of both rat and mouse kidneys. Also, LK intake significantly stimulated the production of superoxide anions in the renal cortex and outer medulla in both rats and mice and increased superoxide level in the rat CCD. Moreover, LK intake augments the phosphorylation of p38 and ERK MAPK, the expression of c-Src and tyrosine phosphorylation of ROMK channels. However, treatment of animals with tempol abolished the effect of LK intake on MAPK and c-Src and increased ROMK channel activity in comparing with those of nontreated rats on a LK diet. Inhibiting p38 and ERK with SB202190 and PD98059 significantly stimulated SK in the CCD in rats on a LK diet. In addition, inhibition of PTK with herbimycin A activated SK channels in the CCD from rats on a LK diet. We conclude that LK intake stimulates the generation of superoxide anion and related products and that MAPK and Src family PTK play a physiological role in inhibiting apical K channels in the principal cells in response to LK intake.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The protein tyrosine kinase-dependent pathway mediates the effect of K intake on renal K secretion.

Dietary K intake plays an important role in the regulation of K secretion: a decrease stimulates and an increase suppresses kidney expression of protein tyrosine kinase (PTK), which plays a role in regulating Kir1.1 (ROMK), which is responsible for K secretion in the cortical collecting duct (CCD) and K recycling in the thick ascending limb. Tyrosine phosphorylation of ROMK channels increases w...

متن کامل

Inhibition of phosphatidylinositol 3-kinase stimulates activity of the small-conductance K channel in the CCD.

We used Western blotting to examine the expression of phosphatidylinositol 3-kinase (PI3K) in the renal cortex and outer medulla and employed the patch-clamp technique to study the effect of PI3K on the ROMK-like small-conductance K (SK) channels in the cortical collecting duct (CCD). Low K intake increased the expression of the 110-kDa alpha-subunit (p110alpha) of PI3K compared with rats on a ...

متن کامل

K restriction inhibits protein phosphatase 2B (PP2B) and suppression of PP2B decreases ROMK channel activity in the CCD.

We used Western blot analysis to examine the effect of dietary K intake on the expression of serine/threonine protein phosphatase in the kidney. K restriction significantly decreased the expression of catalytic subunit of protein phosphatase (PP)2B but increased the expression of PP2B regulatory subunit in both rat and mouse kidney. However, K depletion did not affect the expression of PP1 and ...

متن کامل

Role of gp91phox -containing NADPH oxidase in mediating the effect of K restriction on ROMK channels and renal K excretion.

Previous study has demonstrated that superoxide and the related products are involved in mediating the effect of low K intake on renal K secretion and ROMK channel activity in the cortical collecting duct (CCD). This study investigated the role of gp91(phox)-containing NADPH oxidase (NOXII) in mediating the effect of low K intake on renal K excretion and ROMK channel activity in gp91(-/-) mice....

متن کامل

Carbon monoxide stimulates Ca2+ -dependent big-conductance K channels in the cortical collecting duct.

We used the patch-clamp technique to examine the role of carbon monoxide (CO) in regulating Ca(2+)-activated big-conductance K (BK) channels in the principal cell of the cortical collecting duct (CCD). Application of CORM3 or CORM2, a CO donor, activated BK channels in the CCD, whereas adding inactivated CORM2/3 had no effect. Superfusion of the CCD with CO-bubbled bath solution also activated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 298 6  شماره 

صفحات  -

تاریخ انتشار 2010